脚本专栏 发布日期:2025/11/13 浏览次数:1
将 numpy 数组存入文件,有多种文件类型可供选择,对应地就有不同的方法来读写。
下面我将介绍读写 numpy 的三类文件:
通过 numpy 读写 txt 或 csv 文件
import numpy as np a = np.array(range(20)).reshape((4, 5)) print(a) # 后缀改为 .txt 一样 filename = 'data/a.csv' # 写文件 np.savetxt(filename, a, fmt='%d', delimiter=',') # 读文件 b = np.loadtxt(filename, dtype=np.int32, delimiter=',') print(b)
缺点:
通过 numpy 读写 npy 或 npz 文件
读写 npy 文件
import numpy as np a = np.array(range(20)).reshape((2, 2, 5)) print(a) filename = 'data/a.npy' # 写文件 np.save(filename, a) # 读文件 b = np.load(filename) print(b) print(b.shape)
优点:
缺点:
读写 npz 文件
import numpy as np
a = np.array(range(20)).reshape((2, 2, 5))
b = np.array(range(20, 44)).reshape(2, 3 ,4)
print('a:\n', a)
print('b:\n', b)
filename = 'data/a.npz'
# 写文件, 如果不指定key,那么默认key为'arr_0'、'arr_1',一直排下去。
np.savez(filename, a, b=b)
# 读文件
c = np.load(filename)
print('keys of NpzFile c:\n', c.keys())
print("c['arr_0']:\n", c['arr_0'])
print("c['b']:\n", c['b'])
优点:
缺点:
通过 h5py 读写 hdf5 文件
优点:
简单读取
import numpy as np
import h5py
a = np.array(range(20)).reshape((2, 2, 5))
b = np.array(range(20)).reshape((1, 4, 5))
print(a)
print(b)
filename = 'data/data.h5'
# 写文件
h5f = h5py.File(filename, 'w')
h5f.create_dataset('a', data=a)
h5f.create_dataset('b', data=b)
h5f.close()
# 读文件
h5f = h5py.File(filename, 'r')
print(type(h5f))
# 通过切片得到numpy数组
print(h5f['a'][:])
print(h5f['b'][:])
h5f.close()
通过切片赋值
import numpy as np
import h5py
a = np.array(range(20)).reshape((2, 2, 5))
print(a)
filename = 'data/a.h5'
# 写文件
h5f = h5py.File(filename, 'w')
# 当数组a太大,需要切片进行操作时,可以不直接对h5f['a']进行初始化;
# 当之后不需要改变h5f['a']的shape时,可以省略maxshape参数
h5f.create_dataset('a', shape=(2, 2, 5), maxshape=(None, 2, 5), dtype=np.int32, compression='gzip')
for i in range(2):
# 采用切片的形式赋值
h5f['a'][i] = a[i]
h5f.close()
# 读文件
h5f = h5py.File(filename, 'r')
print(type(h5f))
print(h5f['a'])
# 通过切片得到numpy数组
print(h5f['a'][:])
同一个 hdf5 文件可以创建多个 dataset,读取的时候按照 key 来即可。
总结
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。