Go语言中的延迟函数defer示例详解

脚本专栏 发布日期:2025/1/21 浏览次数:1

正在浏览:Go语言中的延迟函数defer示例详解

前言

大家都知道go语言的defer功能很强大,对于资源管理非常方便,但是如果没用好,也会有陷阱哦。Go 语言中延迟函数 defer 充当着 try...catch 的重任,使用起来也非常简便,然而在实际应用中,很多 gopher 并没有真正搞明白 defer、return、返回值、panic 之间的执行顺序,从而掉进坑中,今天我们就来揭开它的神秘面纱!话不多说了,来一起看看详细的介绍吧。

先来运行下面两段代码:

A. 匿名返回值的情况

package main

import (
 "fmt"
)

func main() {
 fmt.Println("a return:", a()) // 打印结果为 a return: 0
}

func a() int {
 var i int
 defer func() {
  i++
  fmt.Println("a defer2:", i) // 打印结果为 a defer2: 2
 }()
 defer func() {
  i++
  fmt.Println("a defer1:", i) // 打印结果为 a defer1: 1
 }()
 return i
}

B. 有名返回值的情况

package main

import (
 "fmt"
)

func main() {
 fmt.Println("b return:", b()) // 打印结果为 b return: 2
}

func b() (i int) {
 defer func() {
  i++
  fmt.Println("b defer2:", i) // 打印结果为 b defer2: 2
 }()
 defer func() {
  i++
  fmt.Println("b defer1:", i) // 打印结果为 b defer1: 1
 }()
 return i // 或者直接 return 效果相同
}

先来假设出结论(这是正确结论),帮助大家理解原因:

  • 多个 defer 的执行顺序为“后进先出/先进后出”;
  • 所有函数在执行 RET 返回指令之前,都会先检查是否存在 defer 语句,若存在则先逆序调用 defer 语句进行收尾工作再退出返回;
  • 匿名返回值是在 return 执行时被声明,有名返回值则是在函数声明的同时被声明,因此在 defer 语句中只能访问有名返回值,而不能直接访问匿名返回值;
  • return 其实应该包含前后两个步骤:第一步是给返回值赋值(若为有名返回值则直接赋值,若为匿名返回值则先声明再赋值);第二步是调用 RET 返回指令并传入返回值,而 RET 则会检查 defer 是否存在,若存在就先逆序插播 defer 语句,最后 RET 携带返回值退出函数;

因此,"color: #ff0000">return最先给返回值赋值;接着 defer 开始执行一些收尾工作;最后 RET 指令携带返回值退出函数。

如何解释两种结果的不同:

上面两段代码的返回结果之所以不同,其实从上面的结论中已经很好理解了。

  • a()int 函数的返回值没有被提前声名,其值来自于其他变量的赋值,而 defer 中修改的也是其他变量(其实该 defer 根本无法直接访问到返回值),因此函数退出时返回值并没有被修改。
  • b()(i int) 函数的返回值被提前声名,这使得 defer 可以访问该返回值,因此在 return 赋值返回值 i 之后,defer 调用返回值 i 并进行了修改,最后致使 return 调用 RET 退出函数后的返回值才会是 defer 修改过的值。

C. 下面我们再来看第三个例子,验证上面的结论:

package main

import (
 "fmt"
)

func main() {
 c:=c()
 fmt.Println("c return:", *c, c) // 打印结果为 c return: 2 0xc082008340
}

func c() *int {
 var i int
 defer func() {
  i++
  fmt.Println("c defer2:", i, &i) // 打印结果为 c defer2: 2 0xc082008340
 }()
 defer func() {
  i++
  fmt.Println("c defer1:", i, &i) // 打印结果为 c defer1: 1 0xc082008340
 }()
 return &i
}

虽然 c()int 的返回值没有被提前声明,但是由于 c()int 的返回值是指针变量,那么在 return 将变量 i 的地址赋给返回值后,defer 再次修改了 i 在内存中的实际值,因此 return 调用 RET 退出函数时返回值虽然依旧是原来的指针地址,但是其指向的内存实际值已经被成功修改了。

即,我们假设的结论是正确的!

D. 补充一条,defer声明时会先计算确定参数的值,defer推迟执行的仅是其函数体。

package main

import (
 "fmt"
 "time"
)

func main() {
 defer P(time.Now())
 time.Sleep(5e9)
 fmt.Println("main ", time.Now())
}

func P(t time.Time) {
 fmt.Println("defer", t)
 fmt.Println("P ", time.Now())
}

// 输出结果:
// main 2017-08-01 14:59:47.547597041 +0800 CST
// defer 2017-08-01 14:59:42.545136374 +0800 CST
// P  2017-08-01 14:59:47.548833586 +0800 CST

E. defer 的作用域

  1. defer 只对当前协程有效(main 可以看作是主协程);
  2. 当任意一条(主)协程发生 panic 时,会执行当前协程中 panic 之前已声明的 defer;
  3. 在发生 panic 的(主)协程中,如果没有一个 defer 调用 recover()进行恢复,则会在执行完最后一个已声明的 defer 后,引发整个进程崩溃;
  4. 主动调用 os.Exit(int) 退出进程时,defer 将不再被执行。
package main

import (
 "errors"
 "fmt"
 "time"
 // "os"
)

func main() {
 e := errors.New("error")
 fmt.Println(e)
 // (3)panic(e) // defer 不会执行
 // (4)os.Exit(1) // defer 不会执行
 defer fmt.Println("defer")
 // (1)go func() { panic(e) }() // 会导致 defer 不会执行
 // (2)panic(e) // defer 会执行
 time.Sleep(1e9)
 fmt.Println("over.")
 // (5)os.Exit(1) // defer 不会执行
}

F. defer 表达式的调用顺序是按照先进后出的方式执行

defer 表达式会被放入一个类似于栈( stack )的结构,所以调用的顺序是先进后出/后进先出的。

下面这段代码输出的结果是 4321 而不是 1234 。

package main

import (
 "fmt"
)

func main() {
 defer fmt.Print(1)
 defer fmt.Print(2)
 defer fmt.Print(3)
 defer fmt.Print(4)
}

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对的支持。